Система счисления это выберите один ответ

Историческим фактом является то, что лозунгом пифагорейцев было выражение: «Все есть число», которым подчеркивалась важная роль чисел в практической деятельности человека. В повседневной жизни каждый из нас сталкивается с множеством чисел, это и номера автомобилей, телефонов, и цены в магазинах, и размер семейного бюджета и т.п. Числа и цифры окружают нас повсюду.

Люди во все времена вели счет и записывали числа, даже в древности. Но записывали они их несколько иначе, чем мы сейчас, по другим правилам. Числа были представлены одним или несколькими символами, которые назвали цифрами.

Изначально числа соответствовали тем предметам, которые пересчитывали. Но с появлением письменности их отделили от предметов, и появилось понятие натурального числа. Дробные числа появились тогда, когда у людей стали возникать потребности в измерениях, и единицы измерения (эталоны) не всегда укладывались целое число раз в измеряемые величины. Исторически понятие числа, как правило, связывают с развитием математики, в настоящее же время оно считается фундаментальным понятием не только математики, но еще и информатики.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Число — это некоторая величина.

Числа складываются из цифр по особым правилам. Разные народы на разных этапах развития человечества устанавливали эти правила. В настоящее время их называют системами счисления.

Аддитивные и мультипликативные системы счисления

Для аддитивной характерно то, что каждая цифра имеет свое значение, для прочтения числа необходимо сложить все значения используемых цифр. Например:

Лень читать?

Задай вопрос специалистам и получи ответ уже через 15 минут!

$XXXXVI = 10 + 10 + 10 + 10 + 5 + 1 = 46$

Рисунок 1.

В этой записи два раза используется иероглиф $»2″$, и в каждом случае он принимает разные значения $»2000″$ и $»20«$.

Для аддитивной («добавительной») системы необходимо знать все цифры-символы и их значения (их бывает до 4-5 десятков), а также порядок записи. Например, в латинской записи если меньшая цифра записана перед большей, то производится вычитание, а если после, то сложение:

$VI = 5+1 = 6.$

Все известные системы счисления делятся на:

Непозиционные системы счисления появились задолго до позиционных. Последние являются, в свою очередь, результатом длительного исторического развития непозиционных систем счисления.

Отличительным признаком непозиционной системы счисления является отсутствие в ней цифры $0$. При разработке правил выполнения арифметических действий с числами возникла необходимость введения символа $»0«$, который впоследствии стал иметь большое значение при совершенствовании способов представления чисел. Именно с появлением $0$ в наборе символов, являющихся цифрами, и связывают возникновение позиционных систем счисления, в которых вес каждой цифры соответствует занимаемой ею позиции в последовательности цифр, изображающих число.

Например, запись $56$ означает, что это число можно составить из $6$ единиц и $5$ десятков. Если поменять позиции цифр, можно получить другое число — $65$, содержащее $6$ десятков и $5$ единиц. Вес цифры $5$ уменьшился в $10$ раз, а вес цифры $6$ в $10$ раз вырос.

В любой позиционной системе счисления число представляется как многочлен. Например, представим десятичное число $4367$ в виде многочлена:

где $10$ — основание десятичной системы.

Позиционные системы счисления бывают:

На основе двоичной системы счисления построена работа всей вычислительной техники, поскольку цифра $0$ означает отсутствие сигнала, т.е. «выключено», а $1$ обозначает, что сигнал пошел, т.е. состояние «включено».

Десятичная система счисления используется нами в повседневной жизни, это наша «арабская» система счета, в основании которой лежат цифры от $0$ до $9$.

Как известно, в вавилонской системе счисления имелся знак, обозначающий пропущенный разряд. Во $II$ веке до н.э. с этими наблюдениями познакомились греческие астрономы. Они стали использовать данную систему счисления, однако целые числа изображали не клиньями, как вавилонцы, а в алфавитной нумерации (дроби в вавилонской шестидесятеричной системой счисления). Нулевой разряд греческие астрономы изображали символом $»0«$ (первая буква греческого слова Ouden — ничто).

Превосходная работа индийских математиков была воспринята арабскими учеными, и Аль-Хорезми в $IX$ веке написал книгу «Индийское искусство счета», в которой описывает десятичную позиционную систему счисления. Простые и удобные правила сложения и вычитания больших чисел, записанных в позиционной системе, сделали ее очень популярной среди европейских купцов.

Написание «арабских» цифр со временем претерпевало изменения. Написание, используемое нами, установилось в $XVI$ веке.

Достаточно широко раньше использовалась двенадцатеричная система счисления. Она произошла от счета на пальцах. Счет вели большим пальцем руки, используя фаланги других четырёх пальцев: всего их $12$.

Числа в английском языке от $1$ до $12$ имеют свое название, последующие числа являются составными:

Для чисел от $13$ до $19$ — окончание слов — $teen$. Например, $15$ — $fiveteen$.

Так и не нашли ответ на свой вопрос?

Просто напиши с чем тебе нужна помощь

Источник

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

×
Вам будет интересно