Выберите 3 теста на гетероскедастичность

Любые студенческие работы — ДОРОГО!

100 р бонус за первый заказ

Явление гетероскедастичности возникает, как правило, при анализе неоднородных объектов. Например, при построении зависимости прибыли фирмы от размера основного фонда (или каких-либо других факторов) гетероскедастичность вызвана тем, что у больших фирм колебания прибыли будут выше, чем у малых.

МНК при наличии гетероскедастичности позволяет получить несмещенные оценки параметров модели, но оценка дисперсии ошибки, и, следовательно, границы доверительных интервалов оценок параметров модели и прогноза зависимой переменной будут неверными, т.к. они вычисляются на основании предположения гомоскедастичности ошибок.

Для проверки на гетероскедастичность существует большое число тестов. Мы остановимся на тсте Голдфельда-Квандта.

Тест Голдфелъда-Квандта применяется в том случае, когда имеются предположения:

1. о прямой зависимости дисперсии σt, ошибки регрессии εt от величины некоторой независимой переменной X в наблюдении t;

2. случайный член εt, распределен нормально и не подвержен автокорреляции.

Алгоритм теста:

1. Упорядочивание n данных в выборке по величине независимой переменной, относительно которой есть подозрение на гетероскедастичность.

2. Исключение с средних наблюдений в этом упорядочении в целях построения двух независимых «частных» регрессий по данным n’ = (n-с)/2 в начале выборки и по данным n’ = (n — с)/2 в конце выборки

3. Проведение двух независимых «частных» регрессий — первых n’ и последних n’ наблюдений и построение соответствующих остатков е1 и е2;

4. Вычисление сумм квадратов остатков «частных» регрессий: е1’е1, е2’е2. Если предположение относительно природы гегероскедастичности верно, то дисперсии ошибок регрессии в последних n’ наблюдениях будут больше (меньше), чем в первых n’ наблюдениях при прямой (обратной) пропорциональной зависимости между σt и Xt и это скажется на сумме квадратов остатков в рассматриваемых частных регрессиях. Поэтому в качестве теста на выявление гетероскедастичности остатков регрессии предлагается использовать статистику F, вид которой определяется предположением зависимости между дисперсией ошибок регрессии σt и регрессором Xt:

F = е1’е1 / е2’е2- в случае обратной пропорциональности

F = е2’е2 / е1’е1- в случае прямой пропорциональности.

Статистика F имеет распределение Фишера с (n’- k- 1) степенями свободы, где k- число объясняющих переменных в регрессионном уравнении. Если значение статистики превышает критически значение при определенном уровне значимости, то нулевая гипотеза Н0 об отсутствии гетероскедастичности отвергается.

Тест ранговой корреляции Голдфелда-Квандта позволяют обнаружить лишь само наличие гетероскедастичности, но они не дают возможности проследить количественный характер зависимости дисперсий ошибок регрессии от значений регрессоров и, следовательно, не представляют каких-либо способов устранения гетероскедастичности.

При использовании этого теста предполагается, что дисперсии ошибок регрессии представляют собой одну и ту же функцию от наблюдаемых значений регрессоров, т.е.

s2 = fi (xi), (1)

Чаще всего функция f выбирается квадратичной, что соответствует тому, что средняя квадратичная ошибка регрессии зависит от наблюдаемых значений регрессоров приближенно линейно. Гомоскедастичной выборке соответствует случай f = const.

Идея теста Уайта заключается в оценке функции (1) с помощью соответствующего уравнения регрессии для квадратов остатков:

, где ui — случайный член. (2)

Гипотеза H0 об отсутствии гетероскедастичности (условие f = const) принимается в случае не значимости регрессии (2) в целом.

a) Итак, сначала к исходной модели применяется обычный МНК;

b) Находятся остатки ei, регрессии;

c) Осуществляется регрессия квадратов этих остатков ei на все регрессоры x вида (2);

d) Осуществляется регрессия квадратов этих остатков ei на квадраты регрессоров x2;

e) Осуществляется регрессия квадратов этих остатков ei на попарные произведения регрессоров;

Для пунктов c) — e) считается F — статистика, если где p — количество регрессоров, то гипотеза H0 об отсутствии гетероскедастичности отклоняется.

Заметим, что на практике применение теста Уайта с включением и не включением попарных произведений дают, как правило, один и тот же результат.

Привлекательной чертой теста является его универсальность. Однако, если гипотеза H0 об отсутствии гетероскедастичности отклоняется, этот тест не дает указания на функциональную форму гетероскедастичности.

Источник

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

×
Вам будет интересно