Выберите верное соотношение между элементами прямоугольного треугольника

ГЛАВА VII. ПОДОБНЫЕ ТРЕУГОЛЬНИКИ

Урок 41. Тема: ИЗМЕРИТЕЛЬНЫЕ РАБОТЫ НА МЕСТНОСТИ

Ресурсный материал

Тест

1) Выберите верное соотношение между элементами прямоугольного треугольника.

2) Сколько пар подобных треугольников изображено на рисунке?

а) 0;

б) 1;

в) 2;

г) 3.

3) Треугольники BMN и ABC, изображенные на рисунке:

а) подобны по двум углам;

б) подобны по двум пропорциональным сторонам и углу между ними;

в) подобны по трем пропорциональным сторонам;

г) не подобны.

4) На рисунке в прямоугольном треугольнике АВС длина катета ВС равна __________

Ответы: 1) г; 2) г; 3) б; 4) СВ = 2√10.

Исторические сведения

• Уже в XVI в. нужды землемерия, строительства и военного дела привели к созданию рукописных руководств геометрического содержания. Первое дошедшее до нас сочинение такого рода носит название «О земном верстании, как землю верстать». Оно является частью «Книги сошного письма», написанной, как полагают, при Иване IV в 1556 г. Сохранившаяся копия относится к 1629 г. При разборе Оружейной Палаты в Москве в 1775 г. была обнаружена инструкция «Устав ратных, пушечных и других дел, касающихся до военной науки», изданная в 1607 и 1621 годах и содержащая некоторые геометрические сведения, которые сводятся к определенным приемам решения задач на нахождение расстояний.

• Для измерения расстояния от точки Я до точки Б (см. рис. 1) рекомендуется вбить в точке Я жезл примерно в рост человека. К верхнему концу жезла Ц прилагается вершина прямого угла угольника так, чтобы один из катетов (или его продолжение) проходил через точку Б. Отмечается точка 3 пересечения другого катета (или его продолжения) с землей. Тогда расстояние БЯ относится к длине жезла ЦЯ так, как длина жезла к расстоянию ЯЗ. Для удобства расчетов и измерений жезл был разделен на 1000 равных частей.

• За шесть веков до нашей эры греческий мудрец Фалес Милетский вычислил высоту египетской пирамиды, измерив длину ее тени. Как это было, рассказывается в книге Я. И. Перельмана «Занимательная геометрия». Фалес, говорит предание, избрал день и час, когда длина собственной его тени равнялась его росту. В этот момент высота пирамиды должна также равняться длине отбрасываемой его тени. Вот, пожалуй, единственный случай, когда человек извлек пользу из своей тени.

ПРИТЧА

Усталый чужеземец пришел в страну Великого Хапи. Солнце уже садилось, когда он подошел к великолепному дворцу фараона. Он что-то сказал слугам. По мановению руки распахнулись перед ним двери и провели его в приемную залу. И вот он стоит в запыленном походном плаще, а перед ним на золоченом троне сидит фараон. Рядом стоят высокомерные жрецы, хранители великих тайн природы.

— Кто ты? — спросил верховный жрец.

— Зовут меня Фалес. Родом я из Милета.

Жрец надменно продолжал:

— Так это ты похвалялся, что сможешь измерить высоту пирамиды, не взбираясь на нее? — Жрецы согнулись от хохота.

— Будет хорошо, — насмешливо продолжал жрец, — если ты ошибешься не более чем на 100 локтей.

— Я могу измерить высоту пирамиды и ошибусь не более чем на пол-локтя. Я сделаю это завтра.

Лица жрецов потемнели. Какая наглость! Этот чужеземец утверждает, что может вычислить то, чего не могут они — жрецы великого Египта.

— Хорошо, — сказал фараон. — Около дворца стоит пирамида, мы знаем ее высоту. Завтра проверим твое искусство.

На следующий день Фалес нашел длинную палку, воткнул ее в землю чуть поодаль пирамиды. Дождался определенного момента. Провел некоторые измерения, сказал способ определения высоты пирамиды и назвал ее высоту.

Когда тень от палки будет той же длины, что и сама палка, то длина тени от центра основания пирамиды до ее вершины будет иметь ту же длину, что и сама пирамида. СЕ = ED, то есть Н = b.

Преимущества: не требуются вычисления.

Недостатки: нельзя измерить высоту предмета при отсутствии солнца и, как следствие, тени.

Источник

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

×
Вам будет интересно