Выберите верные утверждения относительно виртуальной памяти

Виртуальная память

Название «виртуальная» произошло из-за того что процессу неизвестно реальное (физическое) расположение памяти — она может находиться как в оперативной памяти (ОЗУ), так и на диске. Операционная система предоставляет процессу виртуальное адресное пространство (ВАП, virtual address space) определенного размера и процесс может работать с ячейками памяти по любым виртуальным адресам этого пространства, не «задумываясь» о том, где реально хранятся данные.

Введение виртуальной памяти, во-первых, позволяет прикладным программистам не заниматься сложными вопросами реального размещения данных в памяти, во-вторых, дает возможность операционной системе запускать несколько процессов одновременно, поскольку вместо дорогого ограниченного ресурса — оперативной памяти, используется дешевая и большая по емкости внешняя память.

Схема реализации виртуальной памяти в 32-разрядной операционной системе Windows представлена на рис.11.1. Как уже отмечалось, процессу предоставляется виртуальное адресное пространство размером 4 ГБ, из которых 2 ГБ, расположенных по младшим адресам (0000 0000 — 7FFF FFFF), процесс может использовать по своему усмотрению (пользовательское ВАП), а оставшиеся два гигабайта (8000 0000 — FFFF FFFF) выделяются под системные структуры данных и компоненты (системное ВАП)1Специальный ключ /3GB в файле boot.ini увеличивает пользовательское ВАП до 3 ГБ, соответственно, уменьшая системное ВАП до 1 ГБ. Начиная с Windows Vista вместо файла boot.ini используется утилита BCDEDIT. Чтобы увеличить пользовательское ВАП, нужно выполнить следующую команду: bcdedit /Set IncreaseUserVa 3072. При этом, чтобы приложение могло использовать увеличенное ВАП, оно должно компилироваться с ключом /LARGEADDRESSAWARE.. Отметим, что каждый процесс имеет свое собственное пользовательское ВАП, а системное ВАП для всех процессов одно и то же.

Виртуальная память делится на блоки одинакового размера — виртуальные страницы. В Windows страницы бывают большие (x86 — 4 МБ, x64 — 2 МБ) и малые (4 КБ). Физическая память (ОЗУ) также делится на страницы точно такого же размера, как и виртуальная память. Общее количество малых виртуальных страниц процесса в 32 разрядных системах равно 1 048 576 (4 ГБ / 4 КБ = 1 048 576).

Те виртуальные страницы, которые пока не требуются процессу, операционная система может выгрузить на диск, в специальный файл, называемый файлом подкачки (page file).

Структура виртуального адресного пространства

В пользовательском ВАП располагаются исполняемый образ процесса, динамически подключаемые библиотеки (DLL, dynamic-link library), куча процесса и стеки потоков.

В системном ВАП расположены:

Переменные, в которых хранятся границы разделов в системном ВАП, приведены в [5, стр. 442]. Вычисляются эти переменные в функции MmInitSystem (файл base\ntos\mm\mminit.c, строка 373), отвечающей за инициализацию подсистемы памяти. В файле base\ntos\mm\i386\mi386.h приведена структура ВАП и определены константы, связанные с управлением памятью (например, стартовый адрес системного кэша MM_SYSTEM_CACHE_START, строка 199).

Существует несколько способов выделения виртуальной памяти процессам при помощи Windows API2См. обзор в MSDN «Comparing Memory Allocation Methods» (http://msdn.microsoft.com/en-us/library/windows/desktop/aa366533(v=vs.85).aspx).. Рассмотрим два основных способа — с помощью функции VirtualAlloc и с использованием кучи.

Отметим, что резервируются участки виртуальной памяти по адресам, кратным значению константы гранулярности выделения памяти MM_ALLOCATION_GRANULARITY (файл base\ntos\inc\mm.h, строка 54). Это значение равно 64 КБ. Кроме того, размер резервируемой области должен быть кратен размеру страницы (4 КБ).

2. Для более гибкого распределения памяти существует куча процесса, которая управляется диспетчером кучи (heap manager). Кучу используют WinAPI функция HeapAlloc, а также оператор языка C malloc и оператор C++ new. Диспетчер кучи предоставляет возможность процессу выделять память с гранулярностью 8 байтов (в 32-разрядных системах), а для обслуживания этих запросов использует те же функции ядра, что и VirtualAlloc.

Для хранения информации о зарезервированных страницах памяти используются дескрипторы виртуальных адресов (Virtual Address Descriptors, VAD). Каждый дескриптор содержит данные об одной зарезервированной области памяти и описывается структурой MMVAD (файл base\ntos\mm\mi.h, строка 3976).

Дескрипторы виртуальных адресов для каждого процесса организованы в сбалансированное двоичное АВЛ дерево3АВЛ дерево — структура данных для организации эффективного поиска; двоичное дерево, сбалансированное по высоте. Названо в честь разработчиков — советских ученых Г. М. Адельсон Вельского и Е. М. Ландиса. (AVL tree). Для этого в структуре MMVAD имеются поля указатели на левого и правого потомков: LeftChild и RightChild.

Источник

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

×
Вам будет интересно